Sorption behavior of nine chromium ( III ) organic complexes in soil
نویسنده
چکیده
Sorption data were obtained with a Matawan soil and the following chromium (III) organic complexes: chromium (III) ascorbate, chromium (III) glutamate, chromium (III) histidine, chromium (III) mandelate, chromium (III) citrate, chromium (III) cysteine, chromium (III) serine, chromium (III) pyruvate and chromium (III) oxalate. The influence of pH (2-12), ionic strength (0.005-1 M) and concentration of sorbate (1-10 mg/L) on the extent of sorption was evaluated. The pH value did not influence the percent sorption at environmentally relevant pH 7. Ionic strength between 0.005 and 0.01 M KNO3 did not influence the sorption. Sorption and desorption data obtained at pH 7, 0.01 M KNO3 and 1-10 mg/L for each chromium (III) organic complex were analyzed using Freundlich and Langmuir models. The Freundlich model provided good fits for all of the chromium (III) organic complexes. Sorption data for chromium (III) glutamate, chromium (III) pyruvate, chromium (III) oxalate, chromium (III) cysteine, chromium (III) ascorbate and chromium (III) citrate were described well by the Langmuir model. Estimates for the saturated sorption capacities were 141, 70.9, 36.5, 35.5, 28.6 and 4.4 μg/g, respectively. It was not possible to desorb significant amounts of the previously sorbed chromium (III) organic complexes. At the same pH, ionic strength and solid:liquid ratio, the order of the observed sorption to the Matawan soil from highest to lowest was chromium (III) mandelate, chromium (III) glutamate, chromium (III) histidine, chromium (III) cysteine, chromium (III) serine, chromium (III) pyruvate, chromium (III) oxalate, chromium (III) ascorbate and chromium (III) citrate.
منابع مشابه
Interactions of carbamazepine in soil: effects of dissolved organic matter.
Pharmaceutical compounds (PCs) and dissolved organic matter (DOM) are co-introduced into soils by irrigation with reclaimed wastewater. We targeted carbamazepine (CBZ) as a model compound to study the tertiary interactions between relatively polar PCs, DOM, and soil. Sorption-desorption behavior of CBZ was studied with bulk clay soil and the corresponding clay size fraction in the following sys...
متن کاملEffect of Co-existing Heavy Metals and Natural Organic Matter on Sorption/Desorption of Polycyclic Aromatic Hydrocarbons in Soil: A Review
Polycyclic aromatic hydrocarbons (PAHs), abundant in mixed contaminant sites, often coexist with heavy metals. The fate and remediation of PAHs depend heavily on the sorption and desorption behavior of these contaminants. The sorption behavior can in turn be highly affected by certain soil components and properties, such as soil organic matter (SOM) and the presence of heavy metals. Through rev...
متن کاملEffect of Co-existing Heavy Metals and Natural Organic Matter on Sorption/Desorption of Polycyclic Aromatic Hydrocarbons in Soil: A Review
Polycyclic aromatic hydrocarbons (PAHs), abundant in mixed contaminant sites, often coexist with heavy metals. The fate and remediation of PAHs depend heavily on the sorption and desorption behavior of these contaminants. The sorption behavior can in turn be highly affected by certain soil components and properties, such as soil organic matter (SOM) and the presence of heavy metals. Through rev...
متن کاملEffect of physical forms of soil organic matter on phenanthrene sorption.
The sorption coefficient, K(OC), of phenanthrene (PHE) has been reported to vary with different types of organic matter, leading to uncertainties in predicting the environmental behavior of PHE. Among the studies that relate organic matter properties to their sorption characteristics, physical conformation of organic matter is often neglected. In this work, organic matter samples of different p...
متن کاملبررسی اثر حضور هیومیک اسید در جذب فنانترن در خاک رس کائولین
Background & Objectives: Polycyclic aromatic hydrocarbons (PAHs) are considered as important organic contaminants due to their high toxicity and carcinogenic properties. Among PAHs, phenanthrene is found in most contaminated sites. Sorption and desorption of phenanthrene in soil affect the fate of the contaminant in soil-water system. Presence of organic matter (OM) in the soil matrix can also ...
متن کامل